BÖLÜM 2 DİYOTLU DOĞRULTUCULAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 2 DİYOTLU DOĞRULTUCULAR"

Transkript

1 BÖLÜM 2 DİYOTLU DOĞRULTUCULAR A. DENEYİN AMACI: Tek faz ve 3 faz diyotlu doğrultucuların çalışmasını ve davranışlarını incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarım ve tam dalga doğrultucuları, omik ve indüktif yükler altında incelenecektir. B. Teori: Diyotlu Doğrultucular GİRİŞ Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan Hz lik AC güç şeklindedir ve uygulamada DC ye çevrilir. Endüstride kontrollü gerilim ya da güç aktarımı gerekmeyen uygulamalarda maliyet açısından genel eğilim diyotlu doğrultucular kullanmak yönündedir. Diyotlu doğrultucularda güç akışı, şebekeden yüke doğru olup sadece tek yönlüdür. DC güç kaynağı, AC motor sürücüleri ve daha pek çok alanda diyotlu doğrultucular tercih edilmektedir. Diyotlu doğrultucular, gerilimi şebekeden doğrulttukları için üzerlerinde, doğrultucunun türüne göre şebekenin harmoniklerinin frekansında gerilim salınımları olur. Bunları azaltmak için çıkışa yükten önce bir kapasitör eklenir. Kapasitör ne kadar büyük olursa çıkış gerilimindeki salınımlar da o kadar az olacaktır. Diyotlu doğrultucuların kötü özelliklerinden bir tanesi ise şebekeden oldukça yüksek distorsiyonlu akım çekmeleridir. Bu da harmonik standartlarıyla sınırlandırıldığı için her durumda diyotlu doğrultucular kullanılamayabilir. Bunların yerine kontrollü doğrultucular kullanılarak çeşitli denetim stratejileriyle birlikte akım sinüse benzetilir. Diyotlu doğrultucuları, tek faz, üç faz ve yarım dalga doğrultucu, tam dalga doğrultucu şeklinde sınıflandırabiliriz. Şimdi bunları inceleyelim. Tek Faz Yarım Dalga Doğrultucu: Tek faz yarım dalga doğrultucular pek kullanılmasalar da, doğrultucu çalışmasının anlaşılması açısından iyi bir örnek teşkil ederler. Şekil 2.1 de tek fazlı bir yarım dalga doğrultucu görülmektedir. Şekil 2.1 Tek faz, yarım dalga doğrultucu Yarım dalga doğrultucu, diyotun üzerine gelen negatif gerilimi iletmemesinden dolayı, sinüs şeklindeki gerilimin sadece pozitif kısmını doğrultacaktır. GÜÇ ELEKTRONİĞİ 40

2 Yük omik, ya da indüktif olabilir. Eğer yük omik bir yük ise, diyot sadece pozitif evreyi doğrultur ve kesim durumuna geçer, ancak yük indüktif bir yük ise, yük akımı, gerilim sıfıra düştükten sonra, bir süre daha pozitif yönde akmaya devam edeceği için diyot hemen kesime geçemez ve üzerindeki akım sıfıra düşene kadar negatif gerilimi iletir. Bütün bu durumlar aşağıdaki şekilde gösterilmiştir. Şekil 2.2 Omik ve indüktif yük ile gerilim-akım ilişkisi Gerilimin negatife düştüğü durumları engellemek için indüktif yüklü uygulamalarda çıkışa, boşta çalışma diyodu(fwd) bağlanır. Bu, yüke ters paralel olarak bağlanan standart bir diyottur ve gerilim negatife düşme eğilimi gösterdiği zaman iletime geçerek, şebeke diyodunun üzerindeki akımı kendi üzerine alır. Böylece yük akımı boşta çalışma diyodu üzerinden akmaya devam eder ve yük üzerinde sadece oldukça küçük olan diyodun negatif gerilimi gözlenir. Çıkışta gözlenen gerilimin tepe değeri, diyot üzerindeki gerilim düşümü ihmal edilirse yaklaşık olarak giriş işaretininkiyle aynıdır. Bu dalga şeklinin ortalama ve etkin değerleri integral alınarak hesaplanabilir. Aşağıda yarım dalga doğrultucunun çıkış geriliminin ortalama ve etkin değerleri ve nasıl hesaplandığı verilmiştir. V ORT 1 T V T 0 ORT V ( t) dt V 0 t V Sinwt 1 VORT VM Sin( wt) d( wt) 2 VM Cos ( Cos0) 2 VM VORT V RMS 1 T T 0 V 2 ( t) dt 0.5 M V V 2 M ORT ( Coswt ) 0 VM VM VORT 2 VORT 2 I M I ORT VM VRMS 2 I M I RMS 2 GÜÇ ELEKTRONİĞİ 41

3 Tek Faz Tam Dalga Doğrultucu: Tek fazlı uygulamalar için oldukça sık kullanılan tam dalga ya da köprü doğrultucu devresi şekil 2.3 te gösterilmiştir. Şekil 2.3 Tek Fazlı Köprü Doğrultucu 4 tane diyottan oluşan devrede, D1 ve D4 diyotları alternatif gerilimin pozitif evresini geçirecek, D2 ve D3 diyotları da gerilimin negatif evresinde aktif olarak bu bölgeyi doğrultacaktır. Böylece çıkışta, girişteki ac gerilimin iki katı frekansında dc bir gerilim elde edilecektir. Eğer yük indüktif olursa akım gerilimin gerisine düşecek, ancak akımı üzerine alacak pozitif gerilim evresine geçmekte olan başka bir diyot olduğu için yarım dalga doğrultucuda gözlenen negatif voltaj durumu köprü diyotta gerçekleşmeyecektir. Bunlara dair dalga şekilleri şekil 2.4. te gösterilmiştir. Şekil 2.4. Omik ve indüktif yükle köprü doğrultucu gerilim-akım ilişkisi Tek fazlı köprü diyotta da yük gerilim, akımlarının ortalama ve etkin değerleri aynı şekilde integral alarak hesaplanır. Sonuçlar aşağıda verilmiştir. 2V M 2I M VORT I ORT VM I M VRMS I RMS 2 2 Bu formüllerle verilen akım değerleri sadece omik yükler için kullanılabilir. Çünkü sadece bu durumda akım ve gerilimlerin dalga şekilleri aynıdır. GÜÇ ELEKTRONİĞİ 42

4 Üç Faz Yarım Dalga Doğrultucu: Şekil 2.5 te görüldüğü gibi 3 tane tek faz yarım dalga doğrultucunun ortak bir uçta birleşmesiyle oluşmuştur. 3 faz dönüştürücüler, daha yüksek frekanslı ve daha düşük salınımı olan çıkış gerilimleri üretirler. Böylece maliyet ve boyut açısından daha kolay filtrelenen çıkış gerilimleri elde edilmiş olur. Şekil 2.5. Üç faz yarım dalga doğrultucu Üç faz yarım dalga doğrultucuda, hangi faz daha pozitif ise o faza bağlı olan diyot iletime geçer ve bir sonraki faz daha pozitif olup iletimi üzerine alana kadar kapanmaz. Bu durumdan da anlaşılacağı gibi her diyot, fazlar arası gerilimin sıfır olduğu noktadan itibaren iletime geçer ve 120 o boyunca iletimde kalır. İndüktif yük durumunda da bir sonraki diyot, akımı üzerine alacağı için, gerilimin negatife düşmesi durumu, dolayısıyla da boşta çalışma diyotu kullanımına ihtiyaç yoktur. Üç faz yarım dalga doğrultucu yük üzerinde, giriş geriliminin 3 katı frekansında bir salınım oluşturur. Bu sebeple 3-darbeli doğrultucu şeklinde de adlandırılır. Çıkış geriliminin ortalama ve etkin değerleri ise aşağıda verilen formüllerle hesaplanabilir. 3 3V M VORT VRMS VM 0. 84V M GÜÇ ELEKTRONİĞİ 43

5 Üç Faz Tam Dalga Doğrultucu: 3 fazlı gerilimin mevcut olduğu endüstriyel uygulamalarda, üç faz doğrultucular, tek faza tercih edilen bir doğrultucu çeşididir. Bunun sebebi ise, üç faz doğrultucunun, çıkışta daha düşük gerilim salınımları vermesi ve daha yüksek güç aktarabilmesidir. Devre şeması şekil 2.6 da verilmiştir. Şekil 2.6. Üç faz köprü doğrultucu Üç faz köprü doğrultucuda her koldaki diyotlar(d1-d4, D2-D5, D3-D6) birbiriyle 180 o faz farkıyla çalışırlar. Ayrıca alt ve üst grup diyotları da (D1-D3-D5, D2-D6-D4) kendi içlerinde birbirleriyle 120şer derece faz farkıyla çalışırlar. Bu doğrultucu da üç faz yarım dalga doğrultucu gibi fazlar arası gerilim prensibine göre çalışır. Yani hangi fazlar arasındaki gerilim daha büyükse o fazlara ait, alt ve üst grup diyotları iletime geçer. Köprünün çalışmasını incelemek için R fazının açısını 0 olarak ve diğer fazların da sırayla 120şer derece geriden geldiğini varsayalım. Dalga şekilleri ve bu duruma göre diyotların iletim sıraları aşağıda gösterilmiştir. D1 D3 D5 D1 D3 D5 V M -V M D6 D2 D4 D6 D2 D4 Şekil 2.7 Üç faz hat gerilimleri ve diyot iletim periyotları GÜÇ ELEKTRONİĞİ 44

6 Üstteki şekilde açıkça görülüyor ki her diyot 120 derece iletimde kalıyor ve her 60 derecede bir, diyotlardan biri kesime giderken bir diğeri iletime geçiyor. Bu duruma göre elde edilecek olan çıkış gerilimi aşağıda verilmiştir. V O (t) 3V M V IN (t) V M -V M t(ms) Şekil 2.8 Üç faz köprü doğrultucu çıkış gerilimi dalga şekli Şekil 2.8 den de görüldüğü gibi 2 periyotluk sinüs için, konvertörün çıkışı 12 darbeli bir gerilim üretmiştir. Yani tek periyotta 6 darbeli, bir başka deyişle giriş işaretinin frekansının 6 katı frekansta bir gerilim elde ediyoruz. Bu sebeple bu doğrultucuya 6-darbeli dönüştürücü de denmektedir. Omik yükler için yük akımının dalga şekli de aynı olacaktır ancak indüktif yük durumunda akım gerilimin gerisine düşecektir. Bu durum şekil 2.9 da gösterilmiştir. V O (t),i O (t) Şekil 2.9 İndüktif yük için oluşan akım- gerilim faz farkı 3 faz köprü doğrultucunun çıkış geriliminin ortalama ve etkin değerleri de aşağıda verilmiştir ve gerekirse daha önceki doğrultucular için açıklandığı şekilde türetilebilir. 3V M V V VRMS V M ORT M t GÜÇ ELEKTRONİĞİ 45

7 2. 1 Tek Fazlı Yarım Dalga Doğrultucu Tek Fazlı Yarım Dalga Doğrultucu (Omik Yükle) Şekil 2.10 da görünen devreyi kurunuz. Şekil 2.10 Şekil 2.11 GÜÇ ELEKTRONİĞİ 46

8 Girişten verilen 55 Vrms lik alternatif gerilimin pozitif evresi diyot tarafından geçirilecek, negatif evresi ise, diyotun geri bloklama durumuna geçmesi sebebiyle kesilecektir. Alternatif gerilimin sadece bir evresi geçirildiği için bu devreye yarım dalga doğrultucu denmektedir. Bağlantıları kontrol ettikten sonra devreyi çalıştırınız. Y1 kanalındaki çıkış dalga şeklini çiziniz. Aşağıdaki ölçümleri not ediniz. Y1 Kanalında gördüğünüz gerilim dalga şekline göre, akım dalga şeklinin nasıl olmasını beklersiniz? Direnç üzerinden alınan yük geriliminin ortalama ve etkin değeri (Vo mean, Vo rms ) Direnç üzerinden geçen yük akımının ortalama ve etkin değeri. (Io mean, Io rms ) Giriş akımının etkin değeri. (Iin rms ) Yük gerilimi Diyot voltajı GÜÇ ELEKTRONİĞİ 47

9 Yük ve giriş voltajı Şekil 2.12 Tek faz, yarım dalga doğrultucu için elde edilen dalga şekilleri Tablo 2.1 Omik Yük İçin Deney Sonuçları Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin 76V 25V 0.2A 320mA GÜÇ ELEKTRONİĞİ 48

10 Tek Fazlı Yarım Dalga Doğrultucu (Omik Yükle) (DLAB) Şekil 2.13 GÜÇ ELEKTRONİĞİ 49

11 Diyot voltajı Yük voltajı Şekil 2.14 GÜÇ ELEKTRONİĞİ 50

12 2.1.2 Tek Fazlı Yarım Dalga Doğrultucu (İndüktif Yükle) Şekil de görülen devreyi FWD diyotunu bağlamadan kurunuz. Şekil 2.15 Şekil 2.16 GÜÇ ELEKTRONİĞİ 51

13 Osiloskopun,Y1 kanalındaki çıkış geriliminin ve Y2 kanalındaki direnç geriliminin dalga şekliniçiziniz. Elimizdeki dalga şekillerinden çıkış akımının dalga şeklini bulabilir miyiz; nasıl? Aşağıdaki ölçümleri alınız. Toplam yük üzerinden alınan çıkış geriliminin ortalama ve etkin değeri. Toplam yük üzerinden geçen akımın ortalama ve etkin değeri. Giriş akımının etkin değeri. Aşağıda belirtilen indüktif yükleri uygulayarak çıkış geriliminin dalga şekillerini çiziniz R=50 ohm--l=25mh R=50 ohm L=100mH Çıkış akım ve gerilimi 50 ohm-25 mh Çıkış akım ve gerilimi 50 ohm-25 mh GÜÇ ELEKTRONİĞİ 52

14 Diyot gerilimi 50 ohm-25 mh Çıkış akım ve gerilimi 50 ohm-100 mh Diyot gerilimi 50 ohm-100 mh GÜÇ ELEKTRONİĞİ 53

15 Diyot gerilimi 50 ohm-100 mh FWD Şekil 2.17 İndüktif yüklü, yarım dalga doğrultucu için dalga şekilleri Max Vo Ortalama Vo Ortalama Io RMS Iin 50 ohm 100mH 76V 22V 0.4A 0.48A 100ohm 25mH 76V 25V 0.2A 0.32A 50 ohm 100mH FWD ile 76V 25V 0.4A 0.48A Tablo 2.2 İndüktif Yük İçin Deney Sonuçları GÜÇ ELEKTRONİĞİ 54

16 Tek Fazlı Yarım Dalga Doğrultucu (İndüktif Yükle)(DLAB) Şekil 2.18 GÜÇ ELEKTRONİĞİ 55

17 Diyot voltajı Çıkış voltaj ve akımı 50 ohm-25 mh GÜÇ ELEKTRONİĞİ 56

18 Çıkış voltaj ve akımı 50 ohm-100 mh Şekil 2.19 GÜÇ ELEKTRONİĞİ 57

19 2.1.3 Tek Fazlı Yarım Dalga Doğrultucu Boşta Çalışma Diyotu İle (FWD) Şekil de görülen devreyi kurunuz. Şekil 2.20 Şekil 2.21 GÜÇ ELEKTRONİĞİ 58

20 Y1 ve Y2 kanallarındaki dalga şekillerini çiziniz. Bu yük altında, deney de aldığınız ölçümleri alınız. FWD devrede neyi etkilemiştir? Diyot gerilimi 50 ohm-100 mh Diyot gerilimi 50 ohm-100 mh FWD eklenince Şekil 2.22 İndüktif yüklü ve serbest dolaşım diyotlu yarım dalga doğrultucu için dalga şekilleri 50 ohm 100mH 76V 22V 0.4A 0.48A 50 ohm 100mH FWD ile 76V 25V 0.4A 0.48A Tablo 2.3 Serbest Dolaşım Diyodu İçin Deney Sonuçları GÜÇ ELEKTRONİĞİ 59

21 Tek Fazlı Yarım Dalga Doğrultucu Boşta Çalışma Diyotu İle (FWD) (DLAB) Şekil 2.23 GÜÇ ELEKTRONİĞİ 60

22 Diyot gerilimi Yük gerilimi ve akımı Şekil 2.24 GÜÇ ELEKTRONİĞİ 61

23 2. 2 Tek Fazlı Tam Dalga Doğrultucu-Köprü Doğrultucu Tek Fazlı Tam Dalga Doğrultucu (Omik yükle) Şekil 2.25 Şekil 2.26 GÜÇ ELEKTRONİĞİ 62

24 Şekil 2.25 da görülen tam dalga doğrultucu devreyi kurunuz. Bu kez giriş geriliminin pozitif evresini D1-D4 diyot çifti negatif evresini de D2-D3 diyot çifti geçirecektir. Bu sayede sinüs eğrisi şeklinde bir gerilimin her iki evresi de pozitif bir gerilime dönüştürülmüş olacaktır. Bağlantıları kontrol ederek devreyi çalıştırınız. Osiloskobun Y1 kanalından görülen çıkış geriliminin dalga şeklini çiziniz. Çıkış geriliminin ve akımının, ortalama ve etkin değerlerini not ediniz. Giriş geriliminin bir periyodunda, çıkış geriliminde 2 darbe gözlendiği için bu doğrultucuya 2 darbeli doğrultucu da denmektedir. Şekil 2.27 Diyotlu köprü doğrultucu için dalga şekilleri 100 ohmluk yük üzerinde D1 ve D2 diyot gerilimleri Tablo 2.4 Tek Faz Köprü Diyot İçin Deney Sonuçları Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin GÜÇ ELEKTRONİĞİ 63

25 Tek Fazlı Tam Dalga Doğrultucu (Omik yükle) (DLAB) Şekil 2.28 GÜÇ ELEKTRONİĞİ 64

26 D1 gerilimi Yük gerilimi Şekil 2.29 GÜÇ ELEKTRONİĞİ 65

27 Tek Fazlı Tam Dalga Doğrultucu(İndüktif yükle) Şekildeki devreyi kurunuz. Şekil 2.30 Şekil 2.31 GÜÇ ELEKTRONİĞİ 66

28 Devreyi çalıştırarak Y1 kanalındaki çıkış geriliminin ve Y2 kanalındaki direnç geriliminin dalga şeklini çiziniz. Çıkış geriliminin ve akımının ortalama ve etkin değerlerini ölçerek not ediniz. İndüktif yük köprü doğrultucuda ne gibi etkilere sebep oldu? Köprü doğrultucularda da, endüktif yük altında, yarım dalga doğrultucuları gibi serbest dolaşım diyotuna(fwd) ihtiyaç var mıdır? Şekil 2.32 İndüktif yüklü köprü doğrultucu için dalga şekilleri Tek faz tam dalga çıkış akım ve gerilimleri 100 ohm-100 mh D1-D2 diyot gerilimleri 100 ohm-100 mh GÜÇ ELEKTRONİĞİ 67

29 Tek faz tam dalga çıkış akım ve gerilimleri 100 ohm-100 mh Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin Tablo 2.5 Endüktif Yük İle Tek Faz Köprü Diyot İçin Deney Sonuçları GÜÇ ELEKTRONİĞİ 68

30 Tek Fazlı Tam Dalga Doğrultucu(İndüktif yükle) (DLAB) Şekil 2.33 GÜÇ ELEKTRONİĞİ 69

31 D1 gerilimi Yük gerilim ve akımı Şekil 2.34 GÜÇ ELEKTRONİĞİ 70

32 2. 3 Üç Faz Yarım Dalga Doğrultucu Üç Faz Yarım Dalga Doğrultucu (Omik Yükle) Şekildeki devreyi kurunuz. Şekil 2.35 Şekil 2.36 GÜÇ ELEKTRONİĞİ 71

33 Üç faz yarım dalga doğrultucu, şekil 2.35 de de görüldüğü gibi 3 tane tek faz yarım dalga doğrultucunun yüke giden ortak uçlarının bağlanması ile oluşmuştur. Deney düzeneği de şekil 2.36 de gösterilmiştir. Devreyi kurarak osiloskobun Y1 kanalında görülen yük geriliminin dalga şeklini çiziniz. Yük gerilim ve akımının ortalama ve etkin değerlerini not ediniz. Giriş geriliminin bir periyodunda yük gerilimi üzerinde 3 darbe oluştuğundan bu doğrultucuya 3 darbeli doğrultucu da denmektedir. Şekil 2.37 Üç faz yarım dalga doğrultucu için dalga şekilleri 100 ohmluk yük ve giriş gerilimi D1 gerilimi GÜÇ ELEKTRONİĞİ 72

34 D1 ve D2 gerilim Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin 76V 65V 662mA 325mA(tek faz) Tablo 2.6 Üç Faz Yarım Dalga Doğrultucu İçin Deney Sonuçları GÜÇ ELEKTRONİĞİ 73

35 Üç Faz Yarım Dalga Doğrultucu (Omik Yükle) (DLAB) Şekil 2.38 GÜÇ ELEKTRONİĞİ 74

36 D1 gerilimi Giren dalga şekli GÜÇ ELEKTRONİĞİ 75

37 Çıkan dalga şekli Şekil 2.39 GÜÇ ELEKTRONİĞİ 76

38 2.3.2 Üç Fazlı Yarım Dalga Doğrultucu (Endüktif Yükle) Üç fazlı yarım dalga doğrultucuyu şekil 2.40 de gösterildiği gibi dirence 100mH lik seri bir indüktans ekleyerek değiştiriniz. Şekil 2.40 Şekil 2.41 GÜÇ ELEKTRONİĞİ 77

39 Osiloskobun Y1 ve Y2 kanallarındaki gerilim dalga şekillerini çiziniz. 100 ohm-100mh yük akım ve gerilimi 100 ohm-100mh yük akım ve gerilimi 100 ohm-100mh yük varken yük gerilimi ve giriş gerilimi Şekil 2.42 İndüktif yüklü, üç faz yarım dalga doğrultucu için dalga şekilleri Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin 76V 65.6V 643mA 325mA(tek faz) Tablo 2.7 Endüktif Yük ile Üç Faz Yarım Dalga Doğrultucu İçin Deney Sonuçları GÜÇ ELEKTRONİĞİ 78

40 Üç Fazlı Yarım Dalga Doğrultucu (Endüktif Yükle) (DLAB) Şekil 2.43 GÜÇ ELEKTRONİĞİ 79

41 Yük gerilim ve akımı Şekil 2.44 GÜÇ ELEKTRONİĞİ 80

42 2. 4 Üç Faz Köprü Doğrultucu Üç Faz Köprü Doğrultucu (Omik Yükle) Şekil 2.45 Şekil 2.46 GÜÇ ELEKTRONİĞİ 81

43 Şekil 2.45 de üç faz köprü doğrultucu görülmektedir. Yarım dalga doğrultucular şebekeye etkilerinden dolayı genelde kullanılmazlar. Tek faz ve üç faz köprü doğrultucular yaygın olarak kullanılan doğrultucu devreleridir. Bu deneyde üç faz köprü doğrultucunun özellikleri gösterilecektir. Devreyi şekilde gösterildiği gibi kurup çalıştırınız. Yük geriliminin dalga şeklini çiziniz. Yük gerilim ve akımının ortalama ve etkin değerlerini not ediniz. 300 ohmda D1 ve D2 üzerindeki gerilim 300 ohm üzerindeki voltaj Şekil 2.47 Üç faz köprü doğrultucu için dalga şekilleri Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin 131.5V 127V 442mA 320mA (tek faz) Tablo 2.8 Üç Faz Köprü Doğrultucu İçin Deney Sonuçları Giriş gerilimlerinin bir periyoduna göre yük üzerinde 6 darbeli bir gerilim oluştuğu için bu doğrultucuya 6 darbeli doğrultucu da denmektedir. GÜÇ ELEKTRONİĞİ 82

44 Üç Faz Köprü Doğrultucu (Omik Yükle) (DLAB) Şekil 2.48 GÜÇ ELEKTRONİĞİ 83

45 D1 gerilimi Yük gerilim ve akım Şekil 2.49 GÜÇ ELEKTRONİĞİ 84

46 2.4.2 Üç Fazlı Köprü Doğrultucu (İndüktif Yükle) Şekil 2.50 Şekil 2.51 GÜÇ ELEKTRONİĞİ 85

47 Şekil 2.50 de verilen devredeki yük direncine seri olarak 100 mh lik bir indüktans bağlayınız. Yük geriliminin dalga şeklini çiziniz. Yük gerilim ve akımının ortalama ve etkin değerlerini ölçerek not ediniz. 300 ohm 100 mh yük akım ve gerilimi 300 ohm 100 mh yük akım ve gerilimi 300 ohm 100 mh yük akım ve gerilimi Şekil 2.52 İndüktif yüklü üç faz köprü doğrultucu için dalga şekilleri. Max. Vo(Yük gerilimi) Ortalama Vo Ortalama Io RMS Iin 131.5V 127V 435mA 320mA (tek faz) Tablo 2.9 Endüktif Yük İle Üç Faz Köprü Doğrultucu İçin Simülasyon Sonuçları GÜÇ ELEKTRONİĞİ 86

48 Üç Fazlı Köprü Doğrultucu (İndüktif Yükle) (DLAB) Şekil 2.53 GÜÇ ELEKTRONİĞİ 87

49 Yük gerilim ve akımı Şekil 2.54 GÜÇ ELEKTRONİĞİ 88

50 SONUÇLAR Deney deki tek fazlı yarım dalga doğrultucu için ölçtüğünüz gerilimleri teorik olarak hesaplayarak ölçülen değerlerle karşılaştırınız. Sonuçlar uyumlu mu? Değilse neden değil belirtiniz. Yük geriliminin ve akımının dalga şeklini çiziniz. FM FM (Tek fazlı yarım dalga doğrultucu için : FOrt FRMS F M :Akım ya da 2 gerilimin tepe değeri.) Deney deki ölçümlerde elde ettiğiniz değerleri yazarak değerleri ilk deneyle karşılaştırınız. Yük geriliminin ve yük akımının dalga şeklini çiziniz. İndüktif yükte gerilimin niçin negatif değere düştüğünü açıklayınız. İndüktör değerinin değiştirilmesi devreyi nasıl etkiliyor? Neden? Açıklayınız. Deney te elde ettiğiniz dalga şekillerini çizerek deney ile karşılaştırınız. Serbest dolaşım diyotu (FWD) devrede neyi değiştirmiştir? Her iki deneyde aynı yük için ölçtüğünüz ortalama değerleri karşılaştırınız. Sonuçları yorumlayınız. Deney 2.2 de elde ettiğiniz gerilim ve akım dalga şekillerini çiziniz. Ölçülen gerilim ve akım değerlerinin ortalama ve etkin değerlerini teorik olarak hesaplayarak elinizdeki değerlerle karşılaştırınız. 2FM FM (Tek fazlı köprü doğrultucu için: FOrt FRMS ) 2 Deney de elde ettiğiniz dalga şekillerini çiziniz. Yük akım ve geriliminin teorik hesaplarını yaparak ölçtüğünüz değerlerle karşılaştırınız. 3 3FLL (Üç fazlı yarım dalga doğrultucu için: FOrt ) 2 Deney 2.4 te elde ettiğiniz yük geriliminin ve akımının dalga şeklini çiziniz. Gerekli teorik hesapları yaparak ölçülenlerle karşılaştırınız. FLL (Üç fazlı köprü doğrultucu için: FOrt 3 ) GÜÇ ELEKTRONİĞİ 89

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR 1. DENEYİN

Detaylı

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR BÖLÜM 2 DİYOTLU DOĞRULTUCULAR A. DENEYİN AMACI: Tek faz diyotlu doğrultucuların çalışmasını ve davranışını incelemek. Bu deneyde tek faz yarım dalga doğrultucuları, omik ve indüktif yükler altında incelenecektir.

Detaylı

TEK FAZLI DOĞRULTUCULAR

TEK FAZLI DOĞRULTUCULAR ELEKTRĠK-ELEKTRONĠK ÜHENDĠSLĠĞĠ GÜÇ ELEKTRONĠĞĠ LABORATUAR TEK FAZL DOĞRULTUCULAR Teorik Bilgi Pek çok güç elektroniği uygulamasında, giriş gücü şebekeden alınan 50-60 Hz lik AC güç şeklindedir ve uygulamada

Detaylı

BÖLÜM 2 D YOTLU DO RULTUCULAR

BÖLÜM 2 D YOTLU DO RULTUCULAR BÖLÜ 2 DYOTLU DORULTUCULAR A. DENEYN AACI: Tek faz ve 3 faz diyotlu dorultucularn çalmasn ve davranlarn incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarm ve tam dalga dorultucular, omik ve indüktif

Detaylı

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR 1. DENEYİN

Detaylı

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR Teorik Bilgi Deney de sabit çıkış gerilimi üretebilen diyotlu doğrultucuları inceledik. Eğer endüstriyel uygulama sabit değil de ayarlanabilir bir gerilime

Detaylı

AC-DC Dönüştürücülerin Genel Özellikleri

AC-DC Dönüştürücülerin Genel Özellikleri AC-DC Dönüştürücülerin Genel Özellikleri U : AC girişteki efektif faz gerilimi f : Frekans q : Faz sayısı I d, I y : DC çıkış veya yük akımı (ortalama değer) U d U d : DC çıkış gerilimi, U d = f() : Maksimum

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi

Detaylı

DC DC DÖNÜŞTÜRÜCÜLER

DC DC DÖNÜŞTÜRÜCÜLER 1. DENEYİN AMACI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) DC DC DÖNÜŞTÜRÜCÜLER DC-DC gerilim azaltan

Detaylı

Yarım Dalga Doğrultma

Yarım Dalga Doğrultma Elektronik Devreler 1. Diyot Uygulamaları 1.1 Doğrultma Devreleri 1.1.1 Yarım dalga Doğrultma 1.1.2 Tam Dalga Doğrultma İki Diyotlu Tam Dalga Doğrultma Dört Diyotlu Tam Dalga Doğrultma Konunun Özeti *

Detaylı

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır. 3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve

Detaylı

Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu

Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu DENEYİN AMACI 1. Üç-fazlı tam dalga tam-kontrollü doğrultucunun çalışma prensibini ve karakteristiklerini anlamak. 2. Üç-fazlı tam dalga tam-kontrollü

Detaylı

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC-DC dönüştürücüler (doğrultucular), AC gerilimi DC gerilime dönüştüren güç elektroniği devreleridir. Güç elektroniğinin temel güç devrelerinden doğrultucuları 2 temel

Detaylı

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce GÜÇ ELEKTRONİĞİ ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE nedimtutkun@duzce.edu.tr Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki diyotlu R-L devresinde,

Detaylı

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. Elektronik Devre Tasarımı Ders 04 Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. www.ozersenyurt.net www.orbeetech.com / 1 AC-DC Dönüştürücüler AC-DC dönüştürücüler

Detaylı

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular) AC-DC dönüştürücüler (doğrultucular), AC gerilimi DC gerilime dönüştüren güç elektroniği devreleridir. Güç elektroniğinin temel güç devrelerinden doğrultucuları 2 temel

Detaylı

ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI

ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Güç Elektroniği Uygulamaları ÜÇ FAZLI KONTROLLÜ DOĞRULTUCU VE DİMMER DEVRE UYGULAMASI 1. DENEYİN AMACI Bu deneyin

Detaylı

DOĞRULTUCULAR VE REGÜLATÖRLER

DOĞRULTUCULAR VE REGÜLATÖRLER Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı DOĞRULTUCULAR VE REGÜLATÖRLER 1. Deneyin Amacı Yarım

Detaylı

Üç-faz Tam Dalga (Köprü) Doğrultucu

Üç-faz Tam Dalga (Köprü) Doğrultucu 427 GÜÇ ELEKTRONİĞİ 3.1 Amaç Üç-faz Tam Dalga (Köprü) Doğrultucu Bu simülasyonun amacı R ve RL yüklerine sahip üç-faz köprü diyot doğrultucunun çalışma ve karakteristiğinin incelenmesidir. 3.2 Simülasyon

Detaylı

DENEY 2 DİYOT DEVRELERİ

DENEY 2 DİYOT DEVRELERİ DENEY 2 DİYOT DEVRELERİ 2.1. DENEYİN AMACI Bu deneyde çıkış gerilim dalga formunda değişiklik oluşturan kırpıcı (clipping) ve kenetleme (clamping) devrelerinin nasıl çalıştığı öğrenilecek ve kavranacaktır.

Detaylı

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta E sınıfı DC kıyıcılar; E sınıfı DC kıyıcılar, çift yönlü (4 bölgeli) DC kıyıcılar olarak bilinmekte olup iki adet C veya iki adet D sınıfı DC kıyıcının birleşiminden oluşmuşlardır. Bu tür kıyıcılar, iki

Detaylı

DENEY FÖYÜ 5: Diyotlu Doğrultma Devreleri

DENEY FÖYÜ 5: Diyotlu Doğrultma Devreleri Deneyin Amacı: DENEY FÖYÜ 5: Diyotlu Doğrultma Devreleri Alternatif akımı doğru akıma dönüştürebilmek, yarım dalga ve tam dalga doğrultma kavramlarını anlayabilmek ve diyot ve köprü diyotla doğrultma devrelerini

Detaylı

dirençli Gerekli Donanım: AC güç kaynağı Osiloskop

dirençli Gerekli Donanım: AC güç kaynağı Osiloskop DENEY 01 DİRENÇLİ TETİKLEME Amaç: Tristörü iletime sokmak için gerekli tetikleme sinyalini üretmenin temel yöntemi olan dirençli tetikleme incelenecektir. Gerekli Donanım: AC güç kaynağı Osiloskop Kademeli

Detaylı

ELEKTRONİK-2 DERSİ LABORATUVARI DENEY 1: Doğrultucu Deneyleri

ELEKTRONİK-2 DERSİ LABORATUVARI DENEY 1: Doğrultucu Deneyleri ELEKTRONİK-2 DERSİ LABORATUVARI DENEY 1: Doğrultucu Deneyleri DENEYİN AMACI (1) Yarım-dalga, tam-dalga ve köprü doğrultucu devrelerinin çalışma prensiplerini anlamak. GENEL BİLGİLER Yeni Terimler (Önemli

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama

Detaylı

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) A. DENEYİN AMACI : Bu deneyin amacı, pasif elemanların (direnç, bobin ve sığaç) AC tepkilerini incelemek ve pasif elemanlar üzerindeki faz farkını

Detaylı

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme Amaç: Osiloskop kullanarak AC gerilimin genlik, periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar:

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) 1. DENEYİN AMACI ÜÇ FAZ EVİRİCİ 3 Faz eviricilerin çalışma

Detaylı

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı DENEY 3: DOĞRULTUCU DEVRELER 3.1. Deneyin Amacı Yarım ve tam dalga doğrultucunun çalışma prensibinin öğrenilmesi ve doğrultucu çıkışındaki dalgalanmayı azaltmak için kullanılan kondansatörün etkisinin

Detaylı

ALTERNATİF AKIMDA GÜÇ

ALTERNATİF AKIMDA GÜÇ 1 ALTERNATİF AKIMDA GÜÇ Elektrik gücü bir elektrik devresi ile transfer edilen yada dönüştürülen elektrik enerjisinin oranıdır. Gücün SI birimi Watt (W) tır. Doğru akım devrelerinde elektrik gücü Joule

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 3 Seçme Sorular ve Çözümleri

Detaylı

GERİLİM REGÜLATÖRLERİ DENEYİ

GERİLİM REGÜLATÖRLERİ DENEYİ GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine

Detaylı

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER TEORİK BİLGİ Alternatıf akımın elde edilmesi Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Alternatif

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ A. DENEYİN AMACI : Seri RC devresinin geçici rejim davranışını osiloskop ile analiz etmek. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler.

Detaylı

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, PWM DOĞRULTUCULAR PWM Doğrultucular AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, - elektronik balastlarda, - akü şarj sistemlerinde, - motor sürücülerinde,

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ

DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ 31 DENEYİN AMACI Bu deneyde elektronik dc güç kaynaklarının ilk aşaması olan diyot doğrultucu devreleri test edilecektir Deneyin amacı; doğrultucu devrelerin (yarım ve

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİKELEKTRONİK LABORATUARI (LAB I) DENEY 6 Deney Adı: Diyotlu Doğrultucu Uygulamaları Öğretim Üyesi: Yard. Doç. Dr. Erhan

Detaylı

Adapazarı Meslek Yüksekokulu Analog Elektronik

Adapazarı Meslek Yüksekokulu Analog Elektronik 22 Adapazarı Meslek Yüksekokulu Analog Elektronik Doğrultma Devreleri AC gerilimi DC gerilime çeviren devrelere doğrultma devreleri denir. Elde edilen DC gerilim dalgalı bir gerilimdir. Kullanılan doğrultma

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Numara : Adı Soyadı : Grup Numarası : DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Amaç: Teorik Bilgi: Ġstenenler: Aşağıda şemaları verilmiş olan 3 farklı devreyi kurarak,

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

DENEY 1 DİYOT KARAKTERİSTİKLERİ

DENEY 1 DİYOT KARAKTERİSTİKLERİ DENEY 1 DİYOT KARAKTERİSTİKLERİ 1.1. DENEYİN AMACI Bu deneyde diyotların akım-gerilim karakteristiği incelenecektir. Bir ölçü aleti ile (volt-ohm metre) diyodun ölçülmesi ve kontrol edilmesi (anot ve katot

Detaylı

Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı

Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı Ölçüm Cihazının Adı: Enerji Analizörü Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı 1) Ölçümün Amacı Amaç; şebeke ya da cihazların(motor barındıran

Detaylı

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır.

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır. AMPERMETRENİN ÖLÇME ALANININ GENİŞLETİLMESİ: Bir ampermetre ile ölçebileceği değerden daha yüksek bir akım ölçmek

Detaylı

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri DENEYİN AMACI :Darbe Genişlik Demodülatörünün çalışma prensibinin anlaşılması. Çarpım detektörü kullanarak bir darbe genişlik demodülatörünün gerçekleştirilmesi.

Detaylı

ELM 232 Elektronik I - Deney 2 Zener Diyotlu Regülatör Tasarımı. Doğrultucu Regülatör Yük. R L yükü üzerinde oluşan sinyalin DC bileşeni

ELM 232 Elektronik I - Deney 2 Zener Diyotlu Regülatör Tasarımı. Doğrultucu Regülatör Yük. R L yükü üzerinde oluşan sinyalin DC bileşeni Amaç Bu deneyin amaçları; tam doğrultucu köprünün çalışmasını izlemek, kondansatör kullanılarak elde edilen doğrultucuyu incelemek ve zenerli regülatör tasarımı yapmaktır. Deneyin Yapılışı Sırasında İhtiyaç

Detaylı

DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri

DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri 1. Seri RC Devresinde Akım ve Gerilim Ölçme 1.1. Deneyin Amacı: a.) Seri RC devresinin özelliklerinin incelenmesi b.) AC devre ölçümlerinin ve hesaplamalarının yapılması 1.2. Teorik Bilgi: Kondansatörler

Detaylı

DENEY 3 Kırpıcı ve Kenetleyici Devreler

DENEY 3 Kırpıcı ve Kenetleyici Devreler ENEY 3 Kırpıcı ve Kenetleyici evreler 1. Amaç Bu deneyin amacı, diyot elemanının elektronik devrelerde diğer bir uygulaması olan ve dalgaların şekillendirilmesinde kullanılan kırpıcı ve kenetleyici devrelerinin

Detaylı

Ders 07. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Ders 07. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. Elektronik Devre Tasarımı Ders 07 Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. www.ozersenyurt.net www.orbeetech.com / 1 3 Fazlı Yarım Kontrollü Köprü Doğrultucu

Detaylı

DENEY NO : 6 KIRPICI DİYOT DEVRELERİ

DENEY NO : 6 KIRPICI DİYOT DEVRELERİ DENEY NO : 6 KIRPICI DİYOT DEVRELERİ DENEYİN AMACI : Diyotların doğrultucu olarak kullanımını öğrenmek. KULLANILACAK MALZEMELER 2 adet 1N4007 diyot, 2 adet 1kΩ, Güç kaynağı, Fonksiyon jeneratörü, Osiloskop.

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ 1. Amaç: Bu deney, diyotların gerilim-akım eğrisinin elde edilmesi, diyotların temel kullanım

Detaylı

4. 8 adet breadboard kablosu, 6 adet timsah kablo

4. 8 adet breadboard kablosu, 6 adet timsah kablo ALINACAK MALZEMELER 1. 0.25(1/4) Wattlık Direnç: 1k ohm (3 adet), 100 ohm(4 adet), 10 ohm (3 tane), 1 ohm (3 tane), 560 ohm (4 adet) 33k ohm (1 adet) 15kohm (1 adet) 10kohm (2 adet) 4.7 kohm (2 adet) 2.

Detaylı

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi Ezgi ÜNVERDİ(ezgi.unverdi@kocaeli.edu.tr), Ali Bekir YILDIZ(abyildiz@kocaeli.edu.tr) Elektrik Mühendisliği Bölümü

Detaylı

Şekil 1. Bir güç kaynağının blok diyagramı

Şekil 1. Bir güç kaynağının blok diyagramı DİYOUN DOĞRULUCU OLARAK KULLANIMI Bu çalışmada, diyotların doğrultucu olarak kullanımı incelenecektir. Doğrultucular, alternatif gerilim (Alternating Current - AC) kaynağından, doğru gerilim (Direct Current

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi ve gerilim ve akım ölçümlerinin yapılması B. KULLANILACAK

Detaylı

BLM 224 ELEKTRONİK DEVRELER

BLM 224 ELEKTRONİK DEVRELER BLM 224 ELEKTRONİK DEVRELER Hafta 3 DİYOT UYGULAMALARI Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü Elektronik Notları 1 Tam Dalga Doğrultucu, Orta Uçlu Bu doğrultma tipinde iki adet diyot orta

Detaylı

ALTERNATİF AKIMIN TANIMI

ALTERNATİF AKIMIN TANIMI ALTERNATİF AKIM ALTERNATİF AKIMIN TANIMI Belirli üreteçler sürekli kutup değiştiren elektrik enerjisi üretirler. (Örnek: Döner elektromekanik jeneratörler) Voltajın zamana bağlı olarak sürekli yön değiştirmesi

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

DİYOTLU DEVRELER. 1. Kırpma devresi: Giriş işaretinin bazı kısımlarını kırpar ve kırpılmış sinyali çıkış işareti olarak kulanır.

DİYOTLU DEVRELER. 1. Kırpma devresi: Giriş işaretinin bazı kısımlarını kırpar ve kırpılmış sinyali çıkış işareti olarak kulanır. Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı DİYOTLU DEVRELER 1. Deneyin Amacı Kırpma ve kenetleme

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#3 Güç Kuvvetlendiricileri Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 3 Güç Kuvvetlendiricileri

Detaylı

Ders 08. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

Ders 08. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. Elektronik Devre Tasarımı Ders 08 Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir. www.ozersenyurt.net www.orbeetech.com / 1 AC AC DÖNÜŞTÜRÜCÜLER AC kıyıcılar (AC-AC

Detaylı

DENEY 2 Diyot Doğrultma Devreleri ve Gerilim Katlayıcı

DENEY 2 Diyot Doğrultma Devreleri ve Gerilim Katlayıcı DENEY 2 Diyot Doğrultma Devreleri ve Gerilim Katlayıcı A. Amaç Bu deneyin amacı, klasik bir DC güç kaynağında yer alan, AC işareti DC işarete dönüştürme işlemi için gerekli diyot doğrultma devrelerinin

Detaylı

Arttıran tip DC kıyıcı çalışması (rezistif yükte);

Arttıran tip DC kıyıcı çalışması (rezistif yükte); NOT: Azaltan tip DC kıyıcı devresinde giriş gerilimi tamamen düzgün bir DC olmasına karsın yapılan anahtarlama sonucu oluşan çıkış gerilimi kare dalga formatındadır. Bu gerilimin düzgünleştirilmesi için

Detaylı

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları Yrd. Doç. Dr. Levent Çetin İçerik Alternatif Gerilim Faz Kavramı ın Fazör Olarak İfadesi Direnç, Reaktans ve Empedans Kavramları Devresinde Güç 2 Alternatif Gerilim Alternatif gerilim, devre üzerindeki

Detaylı

DENEY-4 Yarım ve Tam Dalga Doğrultucular

DENEY-4 Yarım ve Tam Dalga Doğrultucular DENEY-4 Yarım ve Tam Dalga Doğrultucular DENEY 4-1 Yarım-Dalga Doğrultucu DENEYİN AMACI 1. Yarım-dalga doğrultucu devrenin çalışma prensibini anlamak. 2. Yarım-dalga doğrultucu devrenin çıkış gerilimini

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELERİ LABORATUVARI I DENEY 2: DİYOT UYGULAMALARI

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELERİ LABORATUVARI I DENEY 2: DİYOT UYGULAMALARI T.. ULUAĞ ÜNİVERSİTESİ MÜHENİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENİSLİĞİ BÖLÜMÜ ELEKTRONİK EVRELERİ LABORATUVARI I Kırpıcı devreler Kenetleme devreleri oğrultma devreleri ENEY 2: İYOT UYGULAMALARI ENEY

Detaylı

DĐYOTLARIN DOĞRULTUCU DEVRELERDE KULLANILMASI

DĐYOTLARIN DOĞRULTUCU DEVRELERDE KULLANILMASI DENEY NO : 4 DĐYOLARIN DOĞRULUCU DERELERDE KULLANILMASI Bu deneyde, diyotun teel kullanı alanlarından biri olan doğrultucu devreleri tanıtak ve çalışalarını pratik olarak anlatak, birbirlerine olan üstünlüklerinin

Detaylı

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir.

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir. 4. Bölüm Eviriciler ve Eviricilerin Sınıflandırılması Doç. Dr. Ersan KABALCI AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Giriş Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta

Detaylı

DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ

DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ DENEY 2: DİYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERİ 1. Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, Şekil 1 de görüldüğü gibi yarım

Detaylı

BÖLÜM 3. A. Deneyin Amac

BÖLÜM 3. A. Deneyin Amac BÖLÜM 3 TRSTÖRLÜ DORULTUCULAR A. Deneyin Amac Tek faz ve 3 faz tristörlü dorultucularn çalmasn ve davranlarn incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarm ve tam dalga tristörlü dorultucular,

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

ALTERNATİF AKIMDA GÜÇ

ALTERNATİF AKIMDA GÜÇ 1 ALTERNATİF AKIMDA GÜÇ ALTERNATİF AKIMDA GÜÇ Joule Kanunu Elektrik gücü, bir elektrik devresi ile transfer edilen yada dönüştürülen elektrik enerjisinin oranıdır. Gücün SI birimi Watt (W) tır. Doğru akım

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ

8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ 8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ Osiloskobun DC ve AC seçici anahtarları kullanılarak yapılır. Böyle bir gerilime örnek olarak DC gerilim kaynaklarının çıkışında görülen

Detaylı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik

Detaylı

Geçmiş yıllardaki vize sorularından örnekler

Geçmiş yıllardaki vize sorularından örnekler Geçmiş yıllardaki vize sorularından örnekler Notlar kapalıdır, hesap makinesi kullanılabilir, öncelikle kağıtlardaki boş alanları kullanınız ve ek kağıt gerekmedikçe istemeyiniz. 6 veya 7.ci sorudan en

Detaylı

EEME210 ELEKTRONİK LABORATUARI

EEME210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME0 ELEKRONİK LABORAUARI DENEY 3: DİYOUN DOĞRULUCU OLARAK KULLANILMASI 04-05 BAHAR Grup Kodu: Deney arihi: Raporu Hazırlayan

Detaylı

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Güç Elektroniği Uygulamaları ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ Hazırlık Soruları

Detaylı

DENEY 4. Rezonans Devreleri

DENEY 4. Rezonans Devreleri ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2104 Elektrik Devreleri Laboratuarı II 2012-2013 Bahar DENEY 4 Rezonans Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı

Detaylı

DENEY 10 UJT-SCR Faz Kontrol

DENEY 10 UJT-SCR Faz Kontrol DNY 0 UJT-SCR Faz Kontrol DNYİN AMACI. Faz kontrol ilkesini öğrenmek.. RC faz kontrol devresinin çalışmasını öğrenmek. 3. SCR faz kontrol devresindeki UJT gevşemeli osilatör uygulamasını incelemek. GİRİŞ

Detaylı

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin

Detaylı

Deney 5: Osilatörler

Deney 5: Osilatörler Deneyin Amacı: Deney 5: Osilatörler Osilatörlerin çalışma mantığının anlaşılması. Wien köprü osilatörü uygulamasının yapılması. A.ÖNBİLGİ Osilatörler, DC güç kaynağındaki elektrik enerjisini AC elektrik

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) 9.1 Amaçlar 1. µa741 ile PWM modülatör kurulması. 2. LM555 in çalışma prensiplerinin

Detaylı

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I DENEY 6: DİYOT KARAKTERİSTİKLERİ VE AC-DC DOĞRULTUCU UYGULAMALARI Ad Soyad

Detaylı

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen DENEY NO : 1 DENEYİN ADI : Kirchhoff Akım/Gerilim Yasaları ve Düğüm Gerilimleri Yöntemi DENEYİN AMACI : Kirchhoff akım/gerilim yasalarının ve düğüm gerilimleri yöntemi ile hesaplanan devre akım ve gerilimlerinin

Detaylı

AC DEVRELERDE BOBİNLER

AC DEVRELERDE BOBİNLER AC DEVRELERDE BOBİNLER 4.1 Amaçlar Sabit Frekanslı AC Devrelerde Bobin Bobinin voltaj ve akımının ölçülmesi Voltaj ve akım arasındaki faz farkının bulunması Gücün hesaplanması Voltaj, akım ve güç eğrilerinin

Detaylı

Şekil 5-1 Frekans modülasyonunun gösterimi

Şekil 5-1 Frekans modülasyonunun gösterimi FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre

Detaylı

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler DENEY 8 OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler 1. Amaç Bu deneyin amacı; Op-Amp kullanarak toplayıcı, fark alıcı, türev alıcı ve integral alıcı devrelerin incelenmesidir.

Detaylı

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I DENEY 2: DİYOT KARAKTERİSTİKLERİ VE AC-DC DOĞRULTUCU UYGULAMALARI Ad Soyad

Detaylı